High-speed flow and fuel imaging study of available spark energy in a spray-guided direct-injection engine and implications on misfires

نویسنده

  • B Peterson
چکیده

The spark energy transferred under the highly stratified conditions during late injection in a spray-guided spark-ignition direct-injection (SG-SIDI) engine is not well characterized. The impact of high pressures, temperatures, velocities, and variations in local fuel concentration along with temporal and/or spatial variations on spark performance must be better characterized. Previous spark ignition studies have not addressed the full range of conditions that are present in SG-SIDI engines. Therefore, high-speed particle image velocimetry (PIV) experiments are conducted to characterize the spark energy dependence for a wide range of well-defined homogeneous fuel–air equivalence ratios (W50–2.9) and average air velocities (0–8 m/s) in an optical SG-SIDI engine. A moderate dependence of spark energy on equivalence ratio is shown to exist with average values of spark energy increasing by 21 per cent for the equivalence ratio range of W50– 2.3. Air injection into the motored engine is used to prepare well-defined flow conditions without the complications of fuel concentration gradients that are present during fuel injection. This allows the study of the effects of velocity, shear strain rate, and vorticity on spark energy. The spark energy increases with velocity at the spark plug. This observation is consistent with findings reported in the literature for low-pressure conditions. A linear increase is shown between shear strain rate and spark energy, while vorticity and spark energy are only weakly correlated. Simultaneous high-speed PIV, planar laser-induced fluorescence, and spark-discharge electrical measurements are also performed in the optical SG-SIDI engine to measure flow properties and fuel concentrations under late injection. Operating parameters are chosen to be near peak indicated mean effective pressure performance, but they occasionally provide a random misfired or partial burned cycle. Misfired cycles occur under stoichiometric-to-lean mixtures and low velocities near the spark plug. The lower spark energies observed under these conditions are in agreement with the observations made under well-controlled mixture and flow conditions reported in this study. All mixture conditions found in misfiring and partially burning cycles are within the ignitability range and fall within the general population of all, predominantly well-burning, cycles. There is no predominant impact of shear strain rate and vorticity under late injection operation on misfires and partial burns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental study of the diesel injector nozzle sediment effect on fuel spray behavior

High pressure amount of fuel in new generation diesel engines’ injector equipped with multiple and small nozzle holes has created significant improvement in the outgoing spray behavior and engine performance. On the other hand, poor fuel quality and injector nozzle embedded in high temperature combustion chamber form fundamental deposits on the nozzle leading to fuel spray inappropriate behavio...

متن کامل

An Experimental formulation for PFI injector penetration length versus time and pressure using high speed spray imaging results

Recently, there have been problems with particulate matter pollution in diesel engines and it has reduced production rate of these engines and also, it has accelerated the development of new technologies for PFI and GDI gasoline engines. The spray characteristics has significant impact on the combustion efficiency, power and emissions on internal combustion engines. In This study, effect of inj...

متن کامل

Theoretical study of the effect of hydrogen addition to natural gas-fueled direct-injection engines

The preparation of air–fuel mixture is considerably dependent on fluid flow dynamics to achieve improved performance, efficiency, and engine combustion in the appearance of flow. In this study, the effects of mixtures of hydrogen and compressed natural gas (CNG) on a spark ignition engine are numerically considered. This article presents the results of a direct-injection engine using methane–hy...

متن کامل

Three-Dimensional Modeling of Combustion Process, Soot and NOx formation In a Direct-injection Diesel Engine

This paper is presented to study the combustion process and emissions in a direct injection diesel engine. Computations are carried out using a three-dimensional model for flows, sprays, combustion and emissions in Diesel engines. Interactions between combustion and emissions with flow field are considered and it is shown that soot mass fraction increases at regions with low turbulence inten...

متن کامل

Effect of Direct Injection Diesel Engine Convert to Sequential Injection CNG Engine in Intake Port Gas Flow Pressure Profile

The one dimension computational model of a sequential injection engine, which runs on compressed natural gas (CNG) with spark ignition, is developed for this study, to simulate the performance of gas flow pressure profile, under various speed conditions. The computational model is used to simulate and study of the steady state and transient processes of the intake manifold. The sequential injec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010